跳转至

lec02 隐私计算常见技术

安全多方计算

百万富翁问题:两个富人比谁钱多,如何能实现互相保密(不借助第三方)但可以比出谁的钱多

联邦学习

本地训练模型,使数据不被多方共享

数据脱敏

差分隐私(differential privacy)

全同态加密

零知识证明(zero knowledge proof)

lec03 数据定价基础

从面向成本定价转向面向需求定价

查询定价的无套利原则

lec05 mechanism design (By Haifeng Xu)

Goal: design a game by specifying its rules to induce a desired outcome among strategic participants

  • Specify game rules, player payoffs, allowable actions, etc.
  • Objective is to induce desirable outcome, e.g., incentivizing socially good or fair behaviors, maximizing revenue if selling goods
  • Typically, want the game to be easy to play (friendly interface)

Examples of Mechanism Design

Single-Item Allocation

1个item和n个agents

agent i对于物品有自己的估价\(v_i\)

需要设计支付金额\(p:(b_i)_i \rightarrow \R^n\)和分配规则\(x:(b_i)_i \rightarrow \R^n\)

福利最大化原则:出价最高的人,物品对他的效用最大,因此卖给他。

诚实报价所需约束:采用二价拍卖(second-price auction),出价最高的人,用二价得到物品。

Truthful bidding is a dominant strategy equilibrium in second-price auctions. That is, bidding true value \(v_i\) is optimal for i, regardless of how other people bid. In such cases, we say the mechanism is Dominant-Strategy Incentive Compatible (DISC)

Multi-Item Allocation

m个item和n个agents

agent i 对于\([m]\)的任何子集\(S\)有自己的估价\(v_i(S)\)

需要设计一个partition将m个物品分配到\(S_1,S_2,...,S_n\)

VCG mechanism (Vickrey-Clarke-Groves mechanism)

  1. Ask each bidder to report their value function \(b_i(S)\)

  2. Compute optimal allocation \((S_1^*,...,S_n^*)=\arg\max_(S_1,...,S_n)\sum_{i=1}^nb_i(S_i)\)

  3. Allocate \(S_i^*\) to bidder i, charge i the following amount

\[ p_i=[\max_{S_{-i}}\sum_{j\neq i}b_j(S_j)]-\sum_{j\neq i}b_j(S_j^*) \]

换句话说,\(p_i\)即agent i对其他人的福利的影响程度

School Choice(无钱机制)

n个学生,m个学校进行匹配

Myerson's Revenue-Optimal Auction